205: Дано:
прямоугольный треугольник АВС,
угол С = 90 градусов,
АС : ВС = 12 : 5,
АВ = 39 сантиметров.
Найти катеты АС, ВС — ?
Рассмотрим прямоугольный треугольник АВС. Пусть длина катета АС = 12 * х сантиметров, а длина катета ВС = 5 * х сантиметров. Тогда по теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АС^2 + ВС^2 = АВ^2:
(12х)^2 + (5х)^2 = 39^2;
144х^2 + 25 х^2 =1 521;
169х^2 = 1 521;
х^2 = 1 521 : 169;
х^2 = 9;
х = 3;
12 * 3 = 36 сантиметров — длина катета АС;
5 * 3 = 15 сантиметров — длина катета ВС.
ответ: 36 сантиметров; 15 сантиметров.
206: пусть х - первый катет, а y - второй:
y^2-17y+60=0
D=289-240=
y1=12
y2=5
найдем x:
x=17-y
x-17-12 x=17-5
х = 5 x=12
ответ: (5;12), (12;5)
Подробнее - на -
ΔBDC и ΔABD - прямоугольныt (∠BDC и ∠BDA прямые, т.к. BD - высота).
В прямоугольном треугольнике напротив в угла 30° лежит катет в два раза меньше гипотенузы. В ΔBCD BC - гипотенуза, DC - катет напротив угла в 30° ⇒ DC = 1/2 BC = 1 см.
В этом же треугольнике по теореме Пифагора находим BD:
∠BAD = 90° - ∠DBA = 30°
В ΔADB AB - гипотенуза, BD - катет напротив угла в 30° ⇒ AB = 2BD = 2√3 см
Из этого же треугольника по теореме Пифагора находим AD:
AC = AD + DC = 3 + 1 = 4 см
ответ: 4 см