1) Радиус вписанной окружности равен отношению площади тр-ка к его полупериметру, т.е. r = SΔ/ p
p = 3·AB/2 = 3·12/2 = 18 (cм)
SΔ = AB²·√3/4 = 12²·√3/4 = 36√3( cм²), тогда
r = 36√3/18 = 2√3 (cм).
ответ: 2√3 см.
1)Чтобы понять существует ли треугольник,надо:
Необходимым и достаточным условием существования треугольника является выполнение следующих неравенств:
a+b>c, a+c>b, b+c>a, (a>0, b>0, c>0),
где a, b и с - длины сторон треугольника.
Другими словами, треугольник существует тогда и только тогда, когда сумма любых двух его сторон больше третьей стороны.
2)Х+2х+6х = 180 (сумма углов в треуг = 180*)
9х=180, х=20
больший угол 6 умн 20*=120*
3)Сумма углов в треугольнике равна 180*. Углы в равнобедренном треугольнике при основании равны. значит: 180-70=110=> 110/2=55*
ответ: угол при основании равен 55*
4)Обозначим половину угла отсекаемого биссектрисой за х
тогда угол при основании С будет 2х
исходя из свойств углов тре-ка получаем
2х+2х+64=180
4х=180-64
4х=116
х=116:4
х=29гр - угол АСМ
29х2=58 гр-угол МАС
180-(58+29)=93 гр-угол АМС
Подробнее - на -
1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
Вообще-то полезно запомнить. В равностороннем треугольнике со стороной a радиус описанной окружности равен R = a/√3; а радиус вписанной окружности в 2 раза меньше, r = a/2√3;.
Прямой применить теорему синусов 2*R*sin(60°) = a, откуда это сразу следует. Если теорема синусов незнакома - не беда, в правильном треугольнике все центры совпадают, и центр описанной окружности лежит на пересечении медиан, то есть на расстоянии (2/3 от длины медианы-биссектрисы-высоты) от вершины и (1/3 от длинны этой высоты) от стороны. То есть R = 2*H/3; r = H/3;
Высота равна H = а*√3/2, что легко сосчитать из треугольника с гипотенузой а и малым катетом а/2. А радиус R = (2/3)*a*√3/2 = a*√3/3 = a/√3; r = R/2 = a/2√3;
ответ r = 2√3;