Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²
10. г)
12. в)
13. б)
Объяснение:
10. (за теоремою про властивість відрізків дотичних)
AD = BD = 5 см
EC = EA = 2 см
BF = CF = 4 см
Р трикутника = DE + EF + DF
DE = AD+EA = 5 см+2 см = 7 см
EF = EC+CF = 2 см+4 см = 6 см
DF = BD+BF = 5 см+4 см = 9 см
Р трикутника = 7 см+6 см+9 см
Р трикутника = 22 см
12. майже теж саме, що і номер 10
13. (за теоремою про кути рівнобедреного трикутника, властивістю відрізків дотичних та теремою про суму кутів трикутника)
AB = AC
Отже трикутник АВС рівнбедрений. А у рівнобедреного трикутника кути при основі рівні
Тому кут АСВ = куту АВС = 50 градусів
кут АВС+кут АСВ+кут ВАС = 180 градусів
кут ВАС = 180 градусів - (кут АВС+кут АСВ) = 180 градусів - (50 градусів+50 градусів) = 180 градусів - 100 градусів = 80 градусів