1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²
1. в) 1440°
2. а) 84 см²
3. г) 108 см²
Объяснение:
1. Суммы углов выпуклого n-угольника = 180°(n-2)
Для n = 10, Сумма углов = 180°*8 = 1440°
2. Площадь параллелограмма S = a*h, где a - основание, а h - высота. Поскольку дана большая высота, то основанием является меньшая сторона (поскольку шлощадь неизменна, то для большей стороны высота будет меньшей).
S = 12*7 = 84 см²
3. Площадь равнобедренного треугольника S = (1/2)*b*h, где b - основание, а h - высота. Известна боковая сторона - а и высота h. Боковая сторона, высота и половина основания образуют прямоугольный треугольник. Применяем теорему Пифагора:
a² = (b/2)² + h² => b = 2*√(a² - h²) = 2*√15² - 9² = 2*12 = 24
S = (1/2)*24*h = 108 см²
Трапеция АВСД, АВ=10, СД=24, центр О - лежит внутри трапеции, Соединяем вершины трапеции с центром, АО=ВО=СО=ДО=13, треугольник АОВ равнобедренный, проводим высоту=медиане ОН, АН=ВН=АВ/2=10/2=5
Треугольник АОН прямоугольный, ОН = (АО в квадрате - АН в квадрате) = корень(169-25)=12, Треугольник ДОС равнобедренный проводим высоту ОК, треугольник ДОК прямоугольный , ОК = корень(ДО в квадрате - 1/2 ДС в квадрате) = корень(169-144) =5
ВЫсота трапеции НК = ОН+ОК=12+5=17
Площадь= (АВ+СД)/2 х НК =(10+24)/2 х 17 = 289
НО! возможен вариант когда центр вне трапеции, тогда все то же самое только высота =
12-5=7, а площадь = 17 х 7 = 119
по моему так, а что в ответе?