М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
max78789867
max78789867
05.02.2023 05:56 •  Геометрия

Ребра тетраэдра равны 33. найдите площадь сечения проходящего через середины четырех его ребер​

👇
Открыть все ответы
Ответ:
dyba2003
dyba2003
05.02.2023
Во первых, нам известно, что ромб - частный случай параллелограмма. Рисуем параллелограмм и из точки B отпускаем серединный перпендикуляр к стороне AD.(параллелограмм ABCD). Отпускаем из точки B высоту BH, и получаем треугольник. AD = 8 см. Периметр ромба = 4(т.к. все стороны у ромба равны) · 8 = 32 см.  HD = AD/2 = 4. По теореме Пифагора узнаём высоту
 8² = 4² + x² 
64 = 16 + x² 
x² = 48
x = √48
Т.к. ромб это частный случай параллелограмма, то для него справедлива формула S = ah 
Sромба = √48 · 8 = √ 48 · √64 = √3072 = 32√3 см²
Найдите периметр и площадь ромба abcd если серединный к стороне ad проходит через вершину в и вd=8 с
4,7(86 оценок)
Ответ:
galina060876
galina060876
05.02.2023
Центр окружности, описанной вокруг треугольника, находится в точке пересечения  срединных перпендикуляров.
Центр окружности,  вписанной в треугольник, находится в точке пересечения его биссектрис.
Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают. 
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты.
Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы). 
Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒
r=[6√3•√3):2]:3=18:6=3
Площадь круга находят по формуле:
S=π•r²
S=π•3²=9π

Сторона правильного треугольника равна 6 корней из 3. вычислите площадь вписанного в него круга.
4,5(39 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ