Точка пересечения биссектрисс делит противоположную сторону на два отрезка, каждый из которых вместе с соседней боковой стороной и самой биссектриссой образует треугольник. Оба эти треугольника - равнобедренные, поскольку угол, который биссектриса образует с противоположной стороной, является внутренним накрест лежащим для одного из двух равных углов, на которые она - биссектриса - делит угол параллелограмма.
Поэтому оба треугольника равнобедренные, и оба отрезка противоположной стороны равны соседним боковым сторонам.
То есть большая сторона равна 26 + 26 = 52
Сторона a(n) правильного n-угольника связана с радиусом R описанной окружности формулой
a(n)=2R sin(180:n)=2Rsin(π:n).
Найдем радиус окружности из формулы длины окружности
C=2πR
R=C:2π
R=12π:2π=6
a(n)=2R sin180:n=2Rsin(π:n)
Подставим известные значения:
6√3=12*sin(180:n)
sin(180:n)=6√3):12=√3):2
√3):2- синус 60 градусов.
180:n =60
n=3
Этот многоугольник - равносторонний треугольник.
Проверка:
Высота этого треугольника по формуле h=а√3):2
h=6√3*√3):2=9
Радиус описанной окружности равен 2/3 высоты:
9:3*2=6, что соответствует условию задачи.