Верны ли следующие утверждения если : а)две прямые пересечены третьей то соответствующие углы равны, б) если при пересечении двух параллельных прямых третьей накрест лежащие углы равны, то эти прямые параллельны
А) не верно, так как это верно только при параллельных прямых б) верно, но неправильно сформулировано, нужно вот как: Если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны
1 Это ответ :) На самом деле тут нужна теория. 1). Фигура AB1D1A1 - правильная треугольная пирамида с основанием AB1D1. Вершина A1 проектируется на основание в центр O правильного треугольника AB1D1. С другой стороны, фигура AB1D1C - тоже правильная пирамида с основанием AB1D1 (на самом деле это вообще правильный тетраэдр, у которого все грани и ребра одинаковые). Поэтому вершина C проектируется на основание в центр O правильного треугольника AB1D1. Это означает, что точки A1 и C лежат на прямой, перпендикулярной плоскости AB1D1, и проходящей через точку O. Другими словами, ДОКАЗАНО, что плоскость AB1D1 перпендикулярна большой диагонали куба A1C. Совершенно так же доказывается, что A1C перпендикулярна плоскости BDC1. Само собой, плоскости AB1D1 и BDC1 параллельны. 2) Теперь надо обозначить O1 - центр треугольника BDC1 (через эту точку проходит диагональ A1C). M - середина BD и AC, M1 - середина B1D1 и A1C1. Тогда из параллельности плоскостей AB1D1 и BDC1 AO/OO1 = A1M1/M1C1 = 1; CO1/OO1 = CM/MA = 1; То есть все три отрезка A1O = OO1 = CO1. Ясно, что OO1 - искомое расстояние между плоскостями (я напоминаю - A1C перпендикулярна обеим плоскостям). Вот, теория закончилась. Дальше решение :) A1C = 3, => OO1 = 1;
Через 3 точки можно провести плоскость, и только одну. Стороны сечения куба этой плоскостью будут лежать на гранях куба. Данное сечение куба - трапеция КЕВ1С с большим основанием В1С и меньшим ЕК. В1С= диагональ грани и равна а√2 по свойству диагонали квадрата. ЕК=(а/2)√2 на том же основании КС²=ДС²+КД²=а²+ 0,25а²=1,25а² Проведем высоту КН трапеции. Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.
Площадь трапеции равна произведению высоты на полусумму оснований: S=KH*(EK+B1C):2= =1,5а√0,5*(0,5а√2+а√2):2= =(1,5а√0,5)*0,75а√2= =1,5а*0,75а*√(0,5*2)=1,125а² ------ Для нахождения площади трапеции существует не только та формула, которую в большей части случаев мы используем. В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны. По ней площадь получается та же, что по обычной формуле через назождение высоты. S=1,125а² ------- [email protected]
б) верно, но неправильно сформулировано, нужно вот как:
Если при пересечении двух прямых третьей накрест лежащие углы равны, то прямые параллельны