1319." На рис. 146 зображено графік руху туриста. 1) На якій відстані від дому був турист через 10 год після початку руху? 2) Скільки часу він витратив на зупинку? 3) Через скільки годин після виходу турист був на відстані 8 км від домівки? 4) З якою швидкістю йшов турист до зупинки? 5) З якою швидкістю йшов турист останні дві години?
Чтобы выполнялось условие <BED=2<АСВ, построим на вершине С угол ВСF, равный двум углам С треугольника АВС. Проводя прямые параллельно прямой СF, мы видим, что если треугольник АВС равнобедренный с основанием АС, то условие задачи не может быть выполнено, поскольку прямая ЕD будет параллельна стороне ВС треугольника при любом положении точки Е на стороне ВС и точка D будет лежать на продолжении стороны АВ, а не на стороне, как дано в условии. Значит <A должен быть больше <C. Но в любом случае по теореме о неравенстве треугольника в треугольнике АЕС АС+ЕС>AE. Остается доказать, что AD ≤ AE. Рассмотрим остроугольный треугольник АВС. Продолжим прямую ЕD до пересечения с прямой СА в точке Р. Угол А треугольника острый, значит угол РАD - тупой, а угол АDЕ - еще тупее... (как внешний угол, равный сумме двух внутренних, не смежных с ним. В треугольнике АDЕ тупым может быть только один угол и он - больший. Против большего угла лежит большая сторона. Значит АЕ>AD и АС+ЕС>AD, что и требовалось доказать.
P.S. Можно отметить, что при <A=90° решение будет таким же, так как <ADE>90°, а если <A>90°, то возможен случай, когда AD>AE.
Расстояние от точки до прямой - длина перпендикуляра, проведенного из точки к прямой.
Проведем ВН⊥АС. Так как угол АСВ тупой, точка Н будет лежать на продолжении стороны АС (см. плоский чертеж).
ВН - проекция DH на плоскость АВС, ⇒ DH⊥AC по теореме о трех перпендикулярах.
DH - искомая величина.
∠ВСН = 180° - ∠ВСА = 180° - 150° = 30° так как это смежные углы.
В прямоугольном треугольнике ВСН напротив угла в 30° лежит катет, равный половине гипотенузы:
ВН = ВС/2 = 6/2 = 3
ΔDBH: ∠DBH = 90°, по теореме Пифагора
DH = √(DB² + BH²) = √(16 + 9) = 5