образует с внутренним углом треугольника развернутый угол, который равен 180° ⇒ ∠C в треугольнике равен 180° - внешн.∠C = 180° - 143° = 37°
Теперь найдем ∠B.
Так как при пересечении двух прямых образуется две пары вертикальных углов, которые всегда равны, а ∠B и угол в 125° как раз таковыми и являются ⇒∠B = 125°
Осталось найти ∠А.
Мы нашли два угла и знаем их градусную меру, а значит можем найти оставшийся ∠A. Мы знаем, что в треугольнике сумма всех трёх углов равна 180°, значит ∠А = 180° - ∠B - ∠C ⇒∠А = 180° - 125° - 37° = 18°
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
∠A = 18°
∠B = 125°
∠C = 37°
Объяснение:
Для начала найдём ∠C.
Поскольку внешний ∠C равен 143°, и он
образует с внутренним углом треугольника развернутый угол, который равен 180° ⇒ ∠C в треугольнике равен 180° - внешн.∠C = 180° - 143° = 37°
Теперь найдем ∠B.
Так как при пересечении двух прямых образуется две пары вертикальных углов, которые всегда равны, а ∠B и угол в 125° как раз таковыми и являются ⇒∠B = 125°
Осталось найти ∠А.
Мы нашли два угла и знаем их градусную меру, а значит можем найти оставшийся ∠A. Мы знаем, что в треугольнике сумма всех трёх углов равна 180°, значит ∠А = 180° - ∠B - ∠C ⇒∠А = 180° - 125° - 37° = 18°