ответ 8 см.
решение. оно основано на теореме о том, что радиус, проведенный в точку касания касательной, перпендикулярен ей.
1. соединим центры окружностей прямой с. длина этой прямой с равна: с= r + r= 8+2= 10 см.
r - радиус большой окружности, r - радиус малой
окружности.
2. проведем общую касательную. её длину назовём x. проведем радиусы в точки касания и в малой окружности, и в большой. рядом поставим обозначения r и r.
3. из центра малой окружности проведем прямую, параллельную прямой x. получим прямоугольник. его малые стороны по 2см, а
большие - по х.
4. катет х найдем из прямоугольного треугольника, где гипотенузой является с =10 см, а второй катет (назовём его в) в = r - r = 8 - 2 = 6 см.
5. по теореме пифагора находим: катет равен корню квадратному из разности квадратов гипотенузы и второго катета, то есть: х =
w30; с2 – в2 = w30; 100 – 36 = w30; 64 = 8 см
Прямые скрещивающиеся
Прямые непараллельные и непересекающиеся называются скрещивающимися. Один из возможных вариантов чертежа скрещивающихся прямых показан на рис. 4.5, где l m, так как l не параллельна m и l не пересекается с m.
Рис. 4.5
Точка пересечения горизонтальных проекций скрещивающихся прямых является горизонтальной проекцией двух горизонтально конкурирующих точек 1 и 2, принадлежащих прямым l и m. Точка пересечения фронтальных проекций скрещивающихся прямых является фронтальной проекцией двух фронтально конкурирующих точек 3 и 4. По горизонтально конкурирующим точкам 1 и 2 определяется взаимное положение прямых l и m относительно П1. Фронтальная проекция 12 точки 1, принадлежащей прямой l, расположена выше, чем фронтальная проекция 22 точки 2, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена над прямой m.
По фронтально конкурирующим точкам 3 и 4 определяется взаимное положение прямых l и m относительно фронтальной плоскости проекций. Горизонтальная проекция 41точки 4, принадлежащей прямой l, расположена ниже, чем горизонтальная проекция 31 точки 3, принадлежащей прямой m (направление взгляда показано стрелкой). Следовательно, прямая l расположена перед прямой m