Номер 1. В треугольнике ACB проведена биссектриса АН, причём АН = НС, угол С равен 20 градусов. Найдите углы треугольника АBC, AНC. Номер 2. В прямоугольном треугольнике гипотенуза равна 30 см. Найдите медиану проведённую к гипотенузе.
Проекция точки на плоскость есть точка пересечения с плоскостью прямой, проходящей через данную точку перпендикулярно к данной плоскости. Перпендикулярные прямые, проведенные к одной и той же плоскости, параллельны. ⇒ Отрезки перпендикулярных прямых от вершин параллелограмма к плоскости взаимно параллельны. В четырехугольнике АА1С1С стороны АА1|║СС1, в четырехугольнике ВВ1ДД1 стороны ВВ1║ДД1. В выпуклых четырехугольниках АА1С1С и ВВ1Д1Д две стороны параллельны, они – трапеции по определению.
Проведем в параллелограмме и его проекции диагонали. Точки их пересечения обозначим О и О1 соответственно. Диагонали параллелограмма точкой пересечения делятся пополам. Следовательно, ОО1 - средняя линия трапеций АА1С1С и ВВ1Д1Д. Тогда ОО1=(АА1+СС1):2= 10:2=5 м. Поэтому ВВ1+ДД1=2•ОО1=10. ⇒ДД1=10-3=7 м.
Четырехугольник АВСД, АВ=СД, АД=ВС, проведем диагональ АС, треугольник АВС=треугольник АСД по трем сторонам АС-общая, уголД=уголВ, уголСАД=уголАСВ - если при пересечении двух прямых третьей прямой (АС),свнутренние разносторонние углы равны то такие прямые параллельны, АД параллельна ВС. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник параллелограмм.
Четырехугольник АВСД. уголА+уголВ=180, уголА+уголД=180, значит угол В=уголД уголВ+уголС=180, уголА=уголС, если в четырехугольнике углы попарно равны то четырехугольник параллелограмм
Проекция точки на плоскость есть точка пересечения с плоскостью прямой, проходящей через данную точку перпендикулярно к данной плоскости. Перпендикулярные прямые, проведенные к одной и той же плоскости, параллельны. ⇒ Отрезки перпендикулярных прямых от вершин параллелограмма к плоскости взаимно параллельны. В четырехугольнике АА1С1С стороны АА1|║СС1, в четырехугольнике ВВ1ДД1 стороны ВВ1║ДД1. В выпуклых четырехугольниках АА1С1С и ВВ1Д1Д две стороны параллельны, они – трапеции по определению.
Проведем в параллелограмме и его проекции диагонали. Точки их пересечения обозначим О и О1 соответственно. Диагонали параллелограмма точкой пересечения делятся пополам. Следовательно, ОО1 - средняя линия трапеций АА1С1С и ВВ1Д1Д. Тогда ОО1=(АА1+СС1):2= 10:2=5 м. Поэтому ВВ1+ДД1=2•ОО1=10. ⇒ДД1=10-3=7 м.