Нет возможности построить рисунок. Постараюсь объяснить без него.
Угол между образующей и проекцией на плоскость основания конуса- угол между образующей и плоскостью основания- это угол между образующей и радиусом основания, угол этот равен 30° .Значит, высота конуса лежит против угла в 30° в прямоуг. треугольнике и равна половине гипотенузы, равной 6см и равна эта высота 3см.
Квадрат радиуса тогда равен 6²-4²=20
объем конуса равне произведению трети высоты , т.е. 3*(1/3)=1 на площадь основания, т.е. на 20π
Объем равен 1*20π=20π/см³/
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.