Рассмотрим треугольники BHC и KBC; У них равны углы HCB и KBC; Известно, что BK=HC; Заметим, что BK/BC = HC/BC так как BK = HC; Значит эти треугольники подобны. BHC - прямоугольный, значит BKC - тоже прямоугольный с прямым углом BKC; То есть BK и медиана и высота, но еще и биссектриса. Значит углы ABK и KBC равны; Треугольники HBO и KOC подобны (прямые углы и HOB = KOC как вертикальные). Значит угол HBO равен углу HCA; Значит HC - высота и биссектриса. С одной стороны, AB = BC, поскольку BK - высота, биссектриса и медиана, с другой BC = AC, поскольку CH - высота, биссектриса и медиана. Значит AB = BC = AC, что означает, что треугольник равносторонний
они действительно равны
Объяснение:
Пусть <ABB1 = x, тогда если <BB1A = 90 градусов (т.к. BB1 - высота), то ABB1 = (180 - 90 - x) градусов = (90 - x) градусов. Т.к. <BAC - вписанный для дуги BC, а <BOC - центральный для этой же дуги BC, то <BOC = 2*<BAC = 2*(90 - x)градусов = (180 - 2x) градусов. Очевидно, что BO = OC = R, тогда треугольник BOC - равнобедренный, тогда <CBO = <BCO = (180 - < BOC) / 2 = (180 - (180 - 2x)) / 2 = 2x / 2 = x. Следовательно <ABB1 = <CBO = x.