1. Рассмотрим ромб АВСЕ. У него противолежащие стороны и углы равны между собой, тогда угол А = углу С , угол В = углу Е. Нам известно, что сумма градусных мер параллелограмма равна 360 градусам. Следовательно:
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
Дано:
АВСЕ — ромб,
ВС = 10 дециметров,
угол В = 150 градусов.
Найти площадь ромба АВСЕ, то есть S АВСЕ — ?
1. Рассмотрим ромб АВСЕ. У него противолежащие стороны и углы равны между собой, тогда угол А = углу С , угол В = углу Е. Нам известно, что сумма градусных мер параллелограмма равна 360 градусам. Следовательно:
угол А + угол С = 360 - 150 - 150;
угол А + угол С = 60;
угол А = углу С = 60 : 2;
угол А = углу С = 30 градусов.
2. S АВСЕ = ВС * СЕ * sin С;
S АВСЕ = 10 * 10 * 1/2;
S АВСЕ = 10 дециметров квадратных.
ответ: 10 дециметров квадратных.