Вкажіть, у якому випадку точки A,BiC належать одній прямій: AJAB=14см, AC=7см, ВС=21см; Б) АВ=6см, АС=14см, ВС=9см; В)АВ=6см, АС=12см, ВС=10см; Г) АВ=2см, АС=11см, ВС=10см.
Обозначим вершины трапеции АВСД. Из вершины С тупого угла трапеции опустим высоту СН на АД. АВСН - прямоугольник ( т.к. трапеция прямоугольная). ВС=АН, АВ=СН. Площадь трапеции равна произведению её высоты на полусумму оснований. S АВСД=СН*(АД+ВС):2 Пусть коэффициент отношения боковых сторон равен х. Тогда АВ=4х, СД=5х. СН=АВ=4х. Из прямоугольного треугольника СНД НД²=СД²-СН² 18=√(25х²-16х²)=3х х=НД:3=18:3=6 см АВ=4х=4*6=24 см АН=√(АС²-СН²)=10 см ВС=АН=10 см АД=10+18=28 см S АВСД=СН*(АД+ВС):2 S АВСД=24*(28+10):2=456 см²
Итак, высота ВН треугольника АВС, проведенная к основанию, равна 32. Она делится центром вписанной окружности в отношении 5:3. Значит ВО = 32:8*5=20, а ОН = 32:8*3=12. ОН, между прочим, это радиус вписанной окружности и ОН=ОК=ОМ. Из прямоугольного треугольника ОКВ найдем по Пифагору ВК=√(ВО²-ОК²) = √(400-144) = 16. Значит ВК=ВМ=16см. Отметим, что КС=НС=НА=АМ = Х (касательные из одной точки). Из прямоугольного тр-ка НВС по Пифагору ВН² = (ВК+Х)² -Х² или 32² = (16+Х)²-Х², откуда 32Х=768, а Х=24. Итак, мы нашли все стороны треугольника: АВ=ВС=(16+24)=40см, а АС=24+24=48. Радиус описанной окружности находим по формуле: R=a*b*c/4S, где a,b,c-стороны тр-ка, а S - его площадь. S = (1/2)*ВН*АС = (1/2)*32*48 = 768. R= 76800/4*768 = 25см.
Только в случае А могут принадлежать