М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kseniamurzakova
kseniamurzakova
04.10.2021 20:14 •  Геометрия

Сделайте на листке решение полное!

👇
Открыть все ответы
Ответ:
Wikpiklear
Wikpiklear
04.10.2021

Запишите уравнение прямой, симметрично прямой y = x - 2 относительно точки A(-3;1)

Объяснение:

Прямая y = x - 2, к=1  ; К(0; -2) принадлежит этой прямой( легко проверяется) .

Пусть уравнение симметричной прямой у₁=к₁х+в₁ .

Т.к прямые симметричные относительно точки, то они параллельны ⇒ их угловые коэффициенты равны , значит к₁=1. Пусть   К₁∈у₁ .

Найдем координаты точки К₁(х;у) симметричной точке К( 0;-2) относительно A(-3;1) , по формулам середины отрезка ( тк.АК=АК₁)

х(А)= \frac{x(K)+x(K_1)}{2}  ,  x(K₁)=-3*2-0=-6,

y(A)=\frac{y(K)+y(K_1)}{2} , y((K₁)= 1*2-(-2)= 4  ⇒  K₁(-6; 4 ).

В уравнение у₁=к₁х+в₁  подставим к=1 и K₁(-6; 4 ) , получим  4=1*(-6)+в₁,

в₁=10 . Окончательно получаем  у₁=1х+10 или  у₁=х+10.

4,4(24 оценок)
Ответ:
роза266
роза266
04.10.2021
AB =16 ; ∠A =30° ; ∠B =105° .

1) BC -?
2) (меньшая сторона) -?

1) AB/sin∠C =BC/sinA   =  AC/sin∠B  = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла , 
эта сторона BC(лежит против меньшего угла ∠A=30°).  
 
длину  AC  не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .

sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или 
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.

* * * * * * *    Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту  BH⊥AC (∠AHB=90°) ⇒  Прямоугольный треугольник BHC  равнобедренный CH =BH ,т.к.  ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH  BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.
4,7(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ