Дано: АВCD - трапеція РЄ I АВ DE 3D 6 см АЕ 3 11 см 1. Розглянемо чотирикутник АВСЕ: РЄ I AB (за умовою) ВС || AЕ (властивість трапеції) отже чотирикутник АВСЕ- паралелограм протилежні сторони паралелограма рівні -D ВС% 3D АЕ 3 11 см AD% 3D AE + DE% 3D11 + 6% 3D17 см Середня лінія трапеції дорівнює напівсумі підстав Середня лінія% 3 (AD + BC ) / 2% 3 (17 + 11) / 2 3D 28/2 3 14 см. 2. У трикутнику CDE сума сторін РЄ та CD% 3D 21 - 6% 3 15 см АВ 3 РЄ (так як АВСЕ паралелограм) отже сума бічних сторін трапеції АВ + CD% 3D 15 см. Периметр трапеції% 3D АВ + CD + BC + AD% 3 15+ 11 + 17 3 43 см.
Объяснение:
можу тільки на українській
И тут мы заметим, что площадь S=24 ровно в 4 раза меньше, чем площадь CDF. Если S - площадь NQT (у тебя не сказано, я типа догадываюсь), то соответственно длины всех сторон будут в корень(4) = 2 раза меньше, чем у CDF, а именно: 15, 13 и 4. Выбирай 15 как наибольшую, и получаешь такой ответ.
Ну, по крайней мере я так думаю, что решил правильно.