Дано решение и рисунок. основание остроугольного равнобедренного треугольника равно 30 см,а высота,опущенная на боковую сторону-24 см.найдите периметр треугольника.
Рисуй прямоуг. треугольник АВС Вписанная окружность центр О имеет касание на АС в точке Д, и точку касания на CD в точке Е гипотенуза треугольника АВ^2= АС^2+ СВ^2 АС+СВ=17(по условию) по св-вам вписанных окружн. АВ = АД+ВЕ-ОД-ОЕ= 17-2-2=13
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
гипотенуза треугольника
АВ^2= АС^2+ СВ^2
АС+СВ=17(по условию)
по св-вам вписанных окружн. АВ = АД+ВЕ-ОД-ОЕ= 17-2-2=13
обозначим АС=а, СВ=в
а^2+b^2=13^2 a+b=17
a=17-b
(17-b)^2+b^2=13^2
120-34b+2b^2=0
B=5 и 12
Следовательно S=1/2*5*12=30