Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Из середины гипотенузы опустили два перпендикуляра на катеты. Перпендикуляры составляют прямой угол с катетом, следовательно параллельны другому катету. Эти перпендикуляры являются средними линиями треугольника (так как параллельны одной из сторон и соединяют середину стороны с точкой на другой стороне). Стороны треугольника вдвое больше средних линий и равняются 18 и 24*. По теореме Пифагора гипотенуза равна √(18^2 +24^2)=30. P= 18+24+30 =72 ------------------------- *) Можно заметить, что нам дан египетский треугольник (3:4:5), умноженный на 6, и найти периметр: (3+4+5)*6=72
45 гр
Объяснение:
Сумма всех углов треугольника равна 180 град
внешн. угол равен 180-135=45 градусов