На рисунке две окружности имеют общий центр о. через точку м большей окружности провели касательные мв и мс к меньшей окружности, к – точка касания. найдите отрезок мк, если радиус большей окружности равен 12 см, а угол вмс равен 120о. 15 !
Проведя перпендикуляр к меньшей стороне у нас получился прямоугольный треугольник гипотенуза которого равна корень из 21 а катеты корень из 15( по условию ) и корень из 6( длина меньшей диагонали которая является катетом треугольника ) Далее: из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее: Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15 ответ :15
Т у это ранобедреный треугольник то бисиктриса медиана и высота проведёного из большего угла это одно и тоже, а т к это прямоугольный треугольник , то бисиктриса его большего угла =45 градусов , а т к мы провель медиану,высоту,бесиктрису из этого угла , то меньшие углы этого прямоугольного треугольника будут равны по 45 градусов)
исходя из вышеданого можно найти катиты прямоуг треугольника т к он равнобедреный ,то формула его катитов будет такова катит = корень квадратный()=корень из 9=3 делил на половину т к катиты одинаковые а всё остальное по теоремепифагора гипотинуза в квадрате =1катит в квадрате+2катит в квадрате
из этого треугольника находим синус меньшего угла из этого треугольника от равен корень из 6 разделить на корень из 21 далее:
Площадь находим по формуле a*b* sin( угла заключённого между ними ) таким образом перемножая все величины мы находим площадь равную 15
ответ :15