Рассмотрим попарно равные треугольники ΔАОN=ΔBОN , они равны по катету /ВО=АО/ и общей гипотенузе ОN,
ΔАОM=ΔCОM, они равны по катету /СО=АО/ и общей гипотенузе ОМ, ΔBОL=ΔCОL, они равны по катету /СО=ВО/ и общей гипотенузе ОL, из равенства этих треугольников следует равенство соответствующих углов ,∠ АОN=∠BОN; ∠BОL=∠CОL; ∠АОМ=∠CОL.
По условию ∠NMO=40°; ∠MAO=90°⇒∠AOM=180°-90°-40°=50°, тогда ∠АОС=2*50°=100°;
Пусть точка касания окружности основания - точка Н, значит АН - высота, биссектр, медиана, так как это равнобедренный треугольник, значит точка Н делит основание ВС пополам, то есть ВН = НС = 14/2 = 7 А по свойству касательных к окружности ВН= ВТ, СН = СМ, значит АТ = АМ = 25 - 7 = 18, значит рассмотрим подобие треугольников АВС и АМТ, у них: общий угол А, МТ // (параллельно) ВС, значит коэффициент подобия = 25/18 (большой - АВС : маленький - АМТ), значит сторона ВС относится к стороне МТ как 25/18, значит 14/х=25/18
Рассмотрим попарно равные треугольники ΔАОN=ΔBОN , они равны по катету /ВО=АО/ и общей гипотенузе ОN,
ΔАОM=ΔCОM, они равны по катету /СО=АО/ и общей гипотенузе ОМ, ΔBОL=ΔCОL, они равны по катету /СО=ВО/ и общей гипотенузе ОL, из равенства этих треугольников следует равенство соответствующих углов ,∠ АОN=∠BОN; ∠BОL=∠CОL; ∠АОМ=∠CОL.
По условию ∠NMO=40°; ∠MAO=90°⇒∠AOM=180°-90°-40°=50°, тогда ∠АОС=2*50°=100°;
Аналогично, ∠LNO=42° ∠NBO=90°⇒∠NOB=180°-90°-42°=48°⇒∠BOA=2*48°=96°
Т.к. сумма всех углов при вершине О равна 360°, то на оставшийся ∠ВОС приходится 360°-100°-96°=164°