Ромб АВСД, АС=40, ВД=30, діагоналі перетинаються під кутом 90 і в точці перетину діляться навпіл, АО=ОС=1/2АС=40/2=20,. ВО=ОД=1/2ВД=30/2=15, трикутник СОД прямокутний, СД=корінь(ОС в квадраті+ОД в квадраті)=корінь(400+225)=25, проводимо перпендикуляр ОТ на СД, ДТ=ОД в квадраті/СД=225/25=9, СТ=ОС в квадраті/ОС=400/25=16 , ОТ=корінь(ДТ*СТ)=корінь(9*16)=12, КО=5-перпендикулярна АВСД в точці О , О-центр вписаного кола, трикутник КОТ прямокутний, КТ=корінь(ОТ в квадраті+КО в квадраті)=корінь(144+25)=13 - відстань
Площадь треугольника OCD в два раза больше площади тр-ка OCB, а высоты, опущенные из вершины C на OD и BO совпадают. Поскольку площадь треугольника может быть посчитана по формуле "половина произведения основания на высоту", отсюда следует, что OD в два раза больше, чем BO. А поскольку у треугольников DAO и BAO высоты, опущенные из вершины A, совпадают, площадь AOD в два раза больше, чем площадь AOB, то есть площадь AOD равна 12.
Можно рассуждать по-другому. Есть теорема, по которой произведение площадей треугольников AOB и COD равно произведению площадей треугольников AOD и BOC, откуда неизвестная площадь тр-ка AOD = 6·8/4=12. Доказательство этой теоремы очень простое, основывается на вычислении площади треугольника по формуле "половина произведения сторон и на синус угла между ними", а также на формуле приведения sin (180°-α)=sin α.