Пусть диаметр шара Х,
тогда и высота конуса Х.
Выразим радиус основания конуса:
r=d*1/ √3
Найдём объём конуса:
V1=1/3пиr^2h=пи*d^2/9 *d.
Найдём объём шара :
V2=Объём шара = 4/3 *πr^3 =4/3 пи(d/2)3=4пиd^3/24=пи d^3/6.
Найдём отношение объёмов:
V1/V2=2/3
ответ.2\3
1) Равнобедренный и прямоугольный
Объяснение:
1) АВ = √(0-0)²+(0-2)² = √4 = 2
ВС = √(0-2)²+(2-0)² = √8 = 2√2
АС = √(0-2)²+(0-0)² = √4 = 2
Поскольку стороны АВ и АС равны то треугольник АВС является равнобедренным. А так как выполняется равенство:
√АВ²+ВС² = ВС
√2²+2² = √8 = 2√2
То мы можем утверждать что треугольник АВС является равнобедренным и прямоугольным.
2) АВ = √(1-2)²+(0-√3)² = √4 = 2
ВС = √(2-8)²+(√3-0)² = √39
АС = √(1-8)²+(0-0)² = √49 = 7
Этот треугольник не может быть равносторонним, так как все его стороны имеют разные значения.
Объяснение:
1. Средняя линия треугольника парраллельна стороне и равна его половине,
Тогда если средние линии треугольника относятся как 2:2:4, то стороны относятся как 4:4:8
4х+4х+8х=45
16х=45
х = 45/16
4х = 45/16*4 = 45/4 = 11,25
8х = 11,25*2 = 22,5
ответ: 11,25 см, 11,25 см, 22,5 см
2. Назовём медиану, проведённую из точки B, BD.
Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF
1) ∠B - общий
2) ∠BAC = ∠BEF - из решения
Отсюда следует, что эти треугольники подобны.
Коэффициент подобия будет равен отношению BD и BO
k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2
15 : EF = 3 : 2
3EF = 30
EF = 10 см
ответ: 10 см
3. Учитывая, что согласно теореме Пифагора сумма квадратов катетов равна квадрату гипотенузы, вычисляем длину гипотенузы АВ прямоугольного треугольника АВС:
АВ^2 = АС^2 + ВС^2
АВ - √АС^2 + ВСАС^2 = √5^2 + (5√3)^2 = √25 + 25 х 3 = √100 = 10 сантиметров.
Отношение катета АС к гипотенузе АВ является синусом угла АВС.
Синус угла АВС = АС/АВ = 5 : 10 = 1/2.
Угол АВС = 30°.
ответ: длина гипотенузы АВ равна 10 сантиметров, угол АВС = 30°.
4. Так как ВН высота треугольника АВС, то треугольники АВН и ВСН прямоугольные.
В прямоугольном треугольнике ВСН определим величину катета ВН через гипотенузу и противолежащий ВН угол.
Sinβ = ВН / ВС.
ВН = ВС * Sinβ = 7 * Sinβ см.
В прямоугольном треугольнике АВН выразим величину катета АН через катет ВН и угол ВАН.
tgα = BH /AH.
AH = BH / tgα = 7 * Sinβ / tgα см.
ответ: Длина отрезка АН равна 7 * Sinβ / tgα см.
5. Рассмотрим треугольник АКД, у которого, по условию, точка В середина отрезка АК, то есть АВ = ВК и так как ВС параллельна АД, как основания трапеции, тогда отрезок ВС является средней линией треугольника.
Длина средней линии треугольника равна половине длины параллельной ей стороны.
ВС = АД / 2 = 12/2 = 6 см.
Так как средняя линия треугольника совпадает с малым основанием трапеции, то сумма сторон трапеции будет равна 12 + 6 = 18 см.
ответ: Сумма оснований трапеции равна 18 см.
Обозначим треугольник АВС, АС=в основание, АВ=ВС=а боковые стороны. Из вершины В проведём высоту ВМ на АС. Центр вписанной окружности -точка О, пусть ВМ=h, тогда по условию ОМ=R=0,4h. Проведём перпендикуляр ОК=R к ВС. Стороны найдём из выражения площадей треугольников Sвос=Sвмс-Sомс. То есть 1/2*ВС*ОК=1/2*ВМ*МС-1/2*ОМ*МС. Или а*R=h*в/2-0,4h*в/2. Подставляем R=0,4h. Получим а* 0,4h=0,6h*в/2. Отсюда в=4/3*а. Зная периметр найдём а , 2а+в=Р, 2а+4/3*а=40. Отсюда а=12. То есть АВ=ВС=12.