Основание треугольника сечения - это диагональ d квадрата основания.
Она равна 18√2 см. Высота пирамиды делит её пополам.
Поэтому d/2 = 9√2 см.
Находим длины боковых рёбер L:
2L² = d².Отсюда L = √(d²/2) =d/√2 = 18√2/√2 = 18 см.
Находим высоту Н пирамиды:
Н = √(L² - (d/2)²) = √(18² - (9√2)²) = √(324 - 162) = √162 = 9√2 см.
(это можно было найти и короче: ведь сечение - равнобедренный прямоугольный треугольник и его высота равна половине гипотенузы).
Получаем ответ: V = (1/3)SoH = (1/3)*18*18*9√2 = 972√2 ≈ 1374,62 см³.
Смотрите, что надо сделать, чтобы решение само по себе возникло:)))
Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС. Поэтому ответ 34 :)))