1. кат.1 = 9 По теореме Пифагора: кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2 гип.-? 9^2 + 40^2 = (Гип.)^2 81 + 1600 = (Гип.)^2 Гип. = √1681 Гип. = 41 2. 25^2 - 15^2 = kat^2 625 - 225 = kat^2 kat = √400 kat = 20 1. Треугольник равносторонний т.к. АВ = ВС = АС Высота в равностороннем треугольнике является медианой => Cторона на которую падает высота делится на 2 равных отрезка: , тогда по теореме Пифагора: CH== 23 * 3 = 69 2. Рассмотрим треугольник СНА: Т. к. угол С = 30 гр., то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС АН =1/2 АС => АН = 1/2 * 22 = 11 см
а.
1.Б1С параллелен БС (т.к. Б1С является средней линией по определению), следовательно, БС параллелен МН.
2. Рассмотрим треугольники ВВ1К и АВ1М. Эти треугольники равны по второму признаку, т.к.: (В1А=ВВ1(по условию), угол ВВ1К = угол АВ1М(как вертикальные), угол МАВ1= угол КВВ1 (т к. БС параллелен МН --> накрест лежащие углы)
3. Аналогично с трегольниками КС1С и НС1А. (они равны по второму признаку: АС1=СС1 , угол АС1Н= угол СС1К, угол С1АН = угол С1СК)
4. если треугольники равны, значит и из площади равны. Рассмотрим площадь треугольника МКН= МВ1А + АВ1КС1 + АС1Н = ВВ1К + АВ1КС1 + АС1Н= ВВ1К + АВ1КС1 + КСС1 = АВС (по чертежу). ч.т.д.
б. еще не решён)