М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
n4rut016
n4rut016
28.07.2020 13:56 •  Геометрия

Найдите отрезки оа , если касательные ав и ас проведены из точки а к окружности с центром о и радиусом 9 см, угол вос=120°

👇
Ответ:
Nazym99
Nazym99
28.07.2020

АВ и АС - перпендикулярны радиусам в точке их касания.

Следовательно, соединив точку А с центром радиуса, получим два прямоугольных треугольника АОВ и АОС.

Угол ВОС делится прямой АО на два равных угла по 60°, т.к. точки В и С равноудалены от центра окружности, и АО делит этот угол пополам. 

Отсюда углы ВАО = САО и равны  30° .

Радиус получившихся прямоугольников - меньший катет, лежащий против угла 30°  . АО - гипотенуза этого треугольника и равна 2 катетам=2 радиусам.

АО=9*2=18 см.  

4,4(61 оценок)
Ответ:
vikaya2911
vikaya2911
28.07.2020

О - центр окружности

АВ=АС, /ОАВ=/ОАС=120:2=60 град (св-ва отрезков касательных, проведённых к окружности из одной точки)

 

Треуг. ОАВ - прямоугольный (ОВ - это радиус, проведённый в т.касания)

сtg/OAB=AB/OB,   АВ=OB*сtg60град=9*(√3/3)=3√3

АС=АВ=3√3

4,5(30 оценок)
Открыть все ответы
Ответ:
ulya061
ulya061
28.07.2020

Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.

Точка М - центр описанной окружности.

Точка О - центр вписанной окружности.

Тогда R=2,5см, то есть ВМ=2,5см.

Радиус вписанной окружности равен по формуле:

r=(AC+BC-АВ)/2 = 2/2=1см.

Итак, СН=r=1см => HB=3-1=2см.

PB=HB=2см (касательные из одной точки).

Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:

ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .

ответ: расстояние между центрами окружностей равно

√1,25 ≈ 1,12 см.

Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:

d² = R² - 2·R·r.

В нашем случае R = 2,5см, а r = 1cм.

тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.


Найдите расстояние между центрами вписанной и описанной окружностей прямоугольного треугольника с ка
4,8(57 оценок)
Ответ:

ответ: 10 (т.е. и вычислять ничего не нужно)))

а доказательство (аргументы для решения) может быть разным...

т.к. хорды по условию имеют общую точку (точку С), следовательно, ∡АСВ=90°

расстояние (которое нужно найти) называется радиусом окружности - это расстояние от центра до точки на окружности (до точки С)

известно: Прямой угол опирается на диаметр (диаметр=2*радиус).

"Расстояние между серединами" сторон треугольника - это средняя линия треугольника.

известно: Средняя линия треугольника (соединяет середины двух сторон треугольника) параллельна третьей стороне треугольника и равна ее половине. ---> диаметр=20; радиус=10...

а еще можно вспомнить: Около любого прямоугольника можно описать окружность. Радиус, перпендикулярный хорде, делит ее пополам. Диагонали прямоугольника равны.

на рисунке я провела эти радиусы и получился еще один прямоугольник (четверть большого прямоугольника), в котором диагонали равны...


Расстояние между серединами взаимно перпендикулярных хорд ac и bc некоторой окружности равно 10. най
4,7(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ