1. Внешний угол тр-ка равен сумме двух не смежных с ним углов. Их отношение друг к другу равно 1:4, то есть они равны Х и 4*Х градусов. Итак Х+4*Х=5*Х=15°. Отсюда Х=3°. Значит наибольший из этих углов равен 3*4=12° 2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°. 3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.
х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3