E 1. Какую фигуру в геометрии называют треугольником? Зап 2. Начертите любой треугольник ABC. Запишите его элемен 3. Что называют углом треугольника? Запишите обозначение
1. Координаты середины отрезка - полусумма координат начала и конца. Значит С((2-2)/2;(2+2)/2) или С(0;2). ответ г). 3. Координаты вектора - разность координат конца и начала этого вектора. АВ{-2-2;7-7} или AB{-4;0}. 4. Длина вектора а{6;-8} равна его модулю: |a|=√(6²+(-8)²)=10. 5. Чтобы проверить, лежит ли точка на окружности, надо подставить координаты точки в уравнение окружности: (-5+5)²+(-3-1)²=16 или 0+16=16. ответ: а) да, лежит. 6. Длина радиуса этой окружности - модуль вектора М0. |M0|=√(0-(-3))²+(0-4)²)=√(9+16)=5. ответ в)
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
1) Треугольник - Геометрическая фигура, образованная тремя пересекающимися прямыми, образующими три внутренних угла.
2) Треугольники называются равными, если их углы равны