Легко показать (я не знаю, центральная это симметрия или нет), что треугольники, образованные парными боковыми сторонами и парой из указанных диагоналей, равны (по стороне и 2 углам при ней, как внутренним накрест лежащимпри параллельных). Например, треугольник А1А2О = треугольник А4А5О, где О - точка пересечения А1А4 и А2А5. Это означает, что обе эти диагонали в точке их пересечения делятся пополам. И эта пара сторон и пара диагоналей центрально симметрична относительно О. Рассматривая другую пару сторон, видим, что и они делятся точкой пересечения пополам, то есть эта точка совпадает с О. Поэтому у фигуры есть центр симметрии, и все диагонали, соединяющие центрально симметричные вершины (А1 и А4, А2 и А5, А4 и А6), обязательно проходят через центр симметрии и делятся им пополам.
Я не уверен, что это то, что вам надо, но по существу это именно то.
Рассмотрим любой не равнобедренный треугольник АВС, у которого высота и медиана из точки В совпадают. Обозначим этот отрезок BD. Рассмотрим треугольники ABD и CBD. * Они прямоугольные, т.к. ВD - высота. * AD=CD т.к. BD - медиана, делит AC пополам. * ВD - общая сторона Следовательно, треугольники равны по двум катетам. У равных треугольников соответствующие величины равны, значит, AB=BC, а значит треугольник равнобедренный. Итог: изначально мы предположили, что данный треугольник не равнобедренный, и доказали обратное. Значит, любой треугольник с совпадающей высотой и медианой - равнобедренный. Что и требовалось доказать.
Пусть ME||AK.
По теореме Фалеса ME делит CK в том же отношении, что и AC - пополам.
Аналогично DK делит BE пополам.
CE=EK=BK => CK =CE+EK =2BK