М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Den7373
Den7373
23.12.2021 17:32 •  Геометрия

в четырехугольнике АВCD диагональ АС является биссектрисой углов A и C. Известно, что AD-3, CD-5. Найдите периметр четырехугольника АBCD​

👇
Ответ:
lubvic77
lubvic77
23.12.2021

16

Объяснение:

Угол А и угол С делённые биссектрисой обозначим углами 1 и 2; 3 и 4 соответственно.

Так как угол 1 равен углу 2, то треугольник АВС равнобедренный, соответственно АВ=ВС=3.  

Так как угол 3 равен углу 4, то треугольник АDC также равнобедренный и АD=DC=5.

P = 5+5+3+3 = 16

4,4(55 оценок)
Открыть все ответы
Ответ:
умняшка220
умняшка220
23.12.2021
 Через 3 точки можно провести плоскость, и только одну.
Стороны сечения куба этой плоскостью будут лежать на гранях куба. 
Данное сечение куба - трапеция КЕВ1С  
с большим основанием В1С и
 меньшим ЕК. 
В1С= диагональ грани и равна а√2 по свойству диагонали квадрата.
ЕК=(а/2)√2 на том же основании
КС²=ДС²+КД²=а²+ 0,25а²=1,25а² 
Проведем высоту КН трапеции.
 Высота равнобедренной трапеции из тупого угла делит большее основание на отрезки, равные полуразности и полусумме оснований.  

НС=(В1С-КЕ):2=(а√2-0,5а√2):2=0,25а√2

КН²=КС² - НС²=1,25а²-(0,25а√2)²=1,25а²-0,125а²=1,125а²

КН=√(1,125а²)=1,5а√0,5 

Площадь трапеции равна произведению высоты на полусумму оснований:
S=KH*(EK+B1C):2=
=1,5а√0,5*(0,5а√2+а√2):2=
=(1,5а√0,5)*0,75а√2=
=1,5а*0,75а*√(0,5*2)=1,125а²
------
Для нахождения площади трапеции существует не только та  формула, которую в большей части случаев мы используем. 
В приложенном рисунке дана формула для произвольной трапеции и для равнобедренной трапеции через стороны.
По ней площадь получается та же,  что по обычной формуле через назождение высоты.
S=1,125а²
-------
[email protected] 
.(:( ребро куба abcda1b1c1d1 равно a. постройте сечение куба , проходящее через прямую b1c и середин
4,7(7 оценок)
Ответ:
Gay1122
Gay1122
23.12.2021
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.

Теперь докажем, что отрезок  MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
4,4(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ