М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Задача. Даны вершины треугольника A(−2,1),B(3,3),С(1,0). Найти: а) длину стороны AB;
б) уравнение медианы BM;
в) cos угла BCA;
г) уравнение высоты CD;
д) длину высоты СD;
е) площадь треугольника АВС.

👇
Ответ:
Алла1666666
Алла1666666
17.10.2022

Даны вершины треугольника A(−2,1), B(3,3), С(1,0). Найти:

а) длина стороны AB = √((3-(-2))² + (3-1)² = √(25 + 4) = √29.

б) уравнение медианы BM.  

Находим координаты точки М как середины стороны АС.

М(((-2+1)/2; (1+3)/2) = (-0,5; 2).

Вектор ВМ = ((-0,5-3); (2-3)) = (-3,5; -1).

Уравнение ВМ: (х – 3)/(-3,5) = (у – 3)/(-1). Это в каноническом виде.

Оно же в общем виде 7у – 2х – 15 = 0.

И в виде уравнения с угловым коэффициентом у = (2/7)х + (15/7).

в) cos угла BCA.  

Вектор СВ = ((1-3); (0-3)) = (-2; -3). Модуль равен √(4 + 9) = √13.

Вектор СА = ((1-(-2)); (0-1)) = (3; -1). Модуль равен √(9 + 1) = √10.

cos(BCA) = (-2*3 + (-3)*(-1))/( √13*√10) = -3/√130 ≈ -0,26312.

г) уравнение высоты CD.

Находим уравнение стороны АВ.

Вектор AB = ((3-(-2)); (3-1)) = (5; 2).

Уравнение АВ: (х + 2)/5 = (у -1)/2 или у = (2/5)х + (9/5).

Угловой коэффициент перпендикуляра к АВ (это высота СD) равен -1/(2/5) = -5/2. Подставим координаты точки С.

0 = (-5/2)*1 + b. Отсюда b = 5/2.  

Уравнение CD: y = (-5/2)x + (5/2).

д) длина высоты СD.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d = (A·Mx + B·My + C)/√A2 + B2

Подставим в формулу данные: координаты точки С(1; 0) и уравнение прямой АВ:  

2х – 5у + 9 = 0.

d = (2·1 + (-5)·0 + 9)/√22 + (-5)2 = (2 + 0 + 9)/√4 + 25 =

= 11/√29 = 11√29/29 ≈ 2.0426487.

е) площадь треугольника АВС по векторам.

Если вершины треугольника заданы, как точки в прямоугольной декартовой системе координат: A1(x1,y1), A2(x2,y2), A3(x3,y3), то площадь такого треугольника можно вычислить по формуле определителя второго порядка:

S= ± (1 /2) *(x1−x3       y1−y3 )

                       (x2−x3      y2−y3 )  

       

 x1−x3       y1−y3  

        x2−x3      y2−y3    

A(−2,1), B(3,3), С(1,0).

S = (1/2)}|((-2-1)*(3-0) – (1-0)*3-1))| = (1/2)*|(-9-2)| = 11/2 = 5,5 кв.ед.  

4,8(59 оценок)
Открыть все ответы
Ответ:
Aleksey8b
Aleksey8b
17.10.2022
В правильной шестиугольной призме противоположные грани параллельны.
В основаниях малые диагонали равны.
Внутренний угол правильного шестиугольника равен 120°.

Точки А, С₁, В и D₁ не лежат в одной плоскости, поэтому прямые АС₁ и BD₁ скрещивающиеся.

AB║DE и AB = DE, значит АВD₁E₁ параллелограмм, ⇒  АЕ₁║BD₁.
Тогда ∠E₁AC₁ = ∠(АЕ₁ ; AC₁) = ∠(BD₁ ; AC₁) = α - искомый.

Найдем малую диагональ шестиугольника из ΔАВС по теореме косинусов:
АС² = АВ² + ВС² - 2·АВ·ВС·cos120°
AC² = 9 + 9 - 2·3·3·(-1/2) = 18 + 9 = 27
АС = 3√3,    АЕ = АС = 3√3.

ΔАЕЕ₁: ∠АЕЕ₁ = 90°, по теореме Пифагора
               АЕ₁ = √(АЕ² + ЕЕ₁²) = √(27 + 16) = √43

ΔАСС₁ = ΔАЕЕ₁ по двум катетам, значит
АС₁ = АЕ₁ = √43

С₁Е₁ = АС = 3√3 (малая диагональ правильного шестиугольника)

Из ΔС₁АЕ₁ по теореме косинусов:
С₁Е₁² = АС₁² + АЕ₁² - 2·АС₁·АЕ₁·cosα
cosα = (АС₁² + АЕ₁² - C₁E₁²) / (2·AC₁·AE₁)
cosα = (43 + 43 - 27) / (2 · √43 · √43) = 59/86

α = arccos (59/86)
4,8(67 оценок)
Ответ:
arinamarkina0
arinamarkina0
17.10.2022
Так как боковые ребра пирамиды равны, ее высота проецируется в центр окружности, описанной около основания.
Докажем это: 
Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.

Площадь основания по формуле Герона:
р = (39 + 17 + 28)/2 = 84/2 = 42 см
S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) =
= √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²

Радиус окружности, описанной около произвольного треугольника:
R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см
ОА = R = 22,1 см
Из прямоугольного треугольника МОА по теореме Пифагора:
МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) =
= √(0,8 · 45) = √36 = 6 см
V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
4,8(22 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ