М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
катя4770
катя4770
17.05.2021 22:35 •  Геометрия

Сп а с и т е основанием треугольной пирамиды dabc служит равнобедренный прямоугольный треугольник. угол bac = 90°, ba=ac=6 корней из 2. ребро da перпендикулярно плоскости основания. грань bdc составляет с плоскостью основания угол 60°. найдите площадь боковой поверхности пирамиды.

👇
Открыть все ответы
Ответ:
оскарик3929
оскарик3929
17.05.2021
1)получим треугольник со сторонами 4 и 5, и углом 180-52=128  используйте теорему косинусов (квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.)  a^2 = b^2 + c^2 - 2bc*cos(a)  2)вначале по теореме косинусов: cos87=0,05 sin87=0,9 bc^2=ab^2+ac^2-2ab*ac*cosa bs^2=45^2+32^2-2*45*32*0,05 bc^2=2905 bc=54(примерно) по теореме синусов: ab/sinc=bc/sin87 45/sinc=54/0,9 sinc=0,75 уголc=41(примерно) уголb=180-87-41=52
4,8(46 оценок)
Ответ:
oleksandrskorbat
oleksandrskorbat
17.05.2021
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
4,5(8 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ