∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
1) Сторона параллелограмма равна 21 см, а высота, проведённая к ней, 15 см. Найдите площадь параллелограмма.
a = 21 см
h = 15 см
S = ah = 21 · 15 = 315 см²
2) Сторона треугольника равна 5 см, а высота, проведённая к ней, в 2 раза больше стороны. Найти площадь треугольника.
а = 5 см
h = 2a = 2 · 5 = 10 см
S = 1/2 · ah = 1/2 · 5 · 10 = 25 см²
3) В трапеции основания равны 6 и 10 см, а высота равна полусумме длин оснований. Найдите площадь трапеции.
a = 10 см
b = 6 см
h = (a + b)/2 = (6 + 10)/2 = 16/2 = 8 см
S = (a + b)/2 · h = (6 + 10)/2 · 8 = 8 · 8 = 64 см²
4) Стороны параллелограмма равны 6 и 8 см, а угол между ними равен 30 градусам. Найти площадь параллелограмма.
а = 6 см
b = 8 см
α = 30°
S = ab · sinα = 6 · 8 · sin30° = 48 · 1/2 = 24 см²
10 и 15 см
Объяснение:
так как противоположные стороны и углы в параллелограмме равны