1) В правильном шестиугольнике радиус описанной окружности равен стороне (центральный угол опирающийся на сторону равен 360/6 = 60 гр). Высота правильного треугольника (она же радиус вписанной окр-ти):
h = Rкор3 /2 = r = кор3
Отсюда R = 2 = a.
S(A1A2A3) = (1/2) A1A2*A2A3*sin120 = (1/2)R^2 *(кор3)/2 = кор3
Тогда S*кор3 = 3
ответ: 3.
2) В треугольнике А1ОА4 угол А1ОА4 = 3*(360/8) = 3*45 = 135 гр.
S(A1OA4) = (1/2) R^2 *sin135 = R^2*кор2 /4 = 16кор2
Отсюда R^2 = 64, R = 8
Тр. А2ОА4 - прямоугольный, так как угол А2ОА4 = 2*(360/8) = 90 гр.
Катеты равны R=8.
S(A2OA4) = R^2 /2 = 64/2 = 32.
ответ: 32.
ответ: 54°; 126°; 54°; 126°
В условии не было сказано о рисунке, я не вводил переменных, поэтому претензий к решению не принимаю.
Объяснение: диагонали ромба разбивают его на четыре равных прямоугольных треугольника, т.к. диагонали ромба взаимно перпендикулярны, поэтому, если коэффициент пропорциональности равен х, то 3х+7х+90=180, т.к. сумма углов треугольника равна 180°⇒10х=90; х=9, значит, углы ромба будут соответственно равны 2*3х=6*9°=54° и 2*7х=14°*9=126°; я удвоил углы треугольника, т.к. диагонали являются биссектрисами внутренних углов ромба. а т.к. противоположные углы ромба равны, то искомые углы ромба равны 54°; 126°; 54°; 126°
Проведем высоту из вершины треугольника. Она будет являться еще и медианой. Допустим,что основание это АВ,а высота СН. Рассмотрим треугольник АНС,он равнобедренный(т.к СН еще и биссектриса,и углы по 45) следовательно сторона АН равна половине основания,т.е. 8:2=4, а сторона HC=AH=4. Найдем площадь по формуле S=1/2AB*HC ; S=8*4*1/2; S=16.