Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение:
Отрезок BM — медиана равнобедренного треугольника ABC (AB=BC). На стороне AB отметили точку К такую, что КМ параллельно BC. Докажите, что BK=КМ.
Дано :
AB = BC (боковые стороны)
AM = MC ( BM медиана)
КМ || BC ( К ∈ [AB] )
- - - - - - -
Док- ать BK = KM
Объяснение:
AM = MC и КМ || BC ⇒ (т. Фалеса ) AK = BK = AB/2 = BC/2
следовательно КM средняя линия треугольника ABC
КM = BC/ 2 но и BK = BC / 2 ⇒ BK = KM ч.т.д.
Можно и по другому (2 -ой В прямоугольном треугольнике AMB (∠AMB =90° , AB _гипотенуза медиана BM треугольника ABC одновременно и высота ) медиана MK = AB/2 (половине гипотенузы) = BK.
рис. cм ПРИЛОЖЕНИЕ
sinA=корень(1-cos^2(A))=корень(1 - 1/4)=корень (3)/2
S = 1/2* AB*AC*sinA=1/2*4*4* (корень(3)/2=4*корень3