Маша приложила друг к другу девять одинаковых прямоугольных плиток шоколада и получила прямоугольник Abcd. Короткая сторона плитки равна 6 сантиметров. Сколько квадратных сантиметров составляет площадь прямоугольника abcd
Трапеция равнобокая, противоположные углы в сумме дают π По теореме косинусов для треугольника ниже диагонали z² = (2x)² + (2x)² - 2*2x*2x*cos(β) z² = 8x² - 8x²*cos(β) По теореме косинусов для треугольника выше диагонали z² = (2x)² + x² - 2*2x*x*cos(π-β) z² = 5x² + 4x²*cos(β) --- 8x² - 8x²*cos(β) = 5x² + 4x²*cos(β) 3x² = 12x²*cos(β) 3 = 12*cos(β) 1 = 4*cos(β) cos(β) = 1/4 sin(β) = √(1-cos²(β)) = √(1-1/16) = √(15/16) = √15/4 По теореме синусов, для треугольника ниже диагонали, R - разиус описанной окружности, причём окружность одна и та же и для трапеции, и для каждого из двух рассматриваемых треугольников z/sin(β) = 2R z/(√15/4) = 4*8 z = 4√15 см Это ответ.
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
Толи легко-толи я не понял
Ну короче ответ: 24