Проведем DK⊥SC. ΔDKC = ΔBKC по двум сторонам и углу между ними (DC = BC как стороны квадрата, КС - общая, углы при вершине С равны, так как боковые грани - равные равнобедренные треугольники). Тогда и ВК⊥SC, значит ∠DKB - линейный угол двугранного угла при боковом ребре пирамиды. Обозначим его α. sinα = 12/13
SC⊥DKB (ребро SC перпендикулярно двум пересекающимся прямым этой плоскости), ⇒ SC⊥OK. Тогда отрезок ОК параллелен высоте треугольника ASC, проведенной из вершины А (обозначим ее h), и равен ее половине. Sasc = 1/2 · SC · h = 1/2 · SC · 2OK = SC·OK = 7√13 ( 1 )
Изначально так:///Пусть задана окружность ω (A; R) на плоскости Oxy, где точка A, центр окружности – имеет координаты a и b. ..Таким образом, координаты x и y любой точки окружности ω (A; R) удовлетворяют уравнению (x – a)^2 + (y – b)^2 = R^2./// Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение. Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?
По теореме о биссектрисе
BE/EC =AB/AC =6/15 =2/5
BE=2x, EC=5x
BE+EC=12 => 7x=12 => x=12/7
BE=24/7 (см), EC =60/7 (см)
Биссектриса по теореме Стюарта
AE =√(AB*AC -BE*EC) =√(6*15 -24/7 *60/7) =3√330/7 ~7,79 (см)