М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Blackwolf11111
Blackwolf11111
22.12.2022 19:34 •  Геометрия

2. а) Начертите угол АОВ;
b) внутри угла проведите луч 0С;
с) найдите величину угла AOB, если: AOC = 12, BOC <в 3 раза
больше АОВ.​

👇
Ответ:
valera5515
valera5515
22.12.2022

AOC=12

BOC=12×3=36

AOB=36+12=48

AOB=48

4,5(30 оценок)
Открыть все ответы
Ответ:
lolgg2
lolgg2
22.12.2022

1. Описать окружность можно только около равнобедренной трапеции, а у нее углы при основании равны, а углы, прилежащие к боковой стороне составляют в сумме 180, поэтому углы будут 49°;  180°-49°=131°. ответ 49°; 131°; 131°.

2. Т.к. ОА и ОВ - радиусы, проведенные в точки касания, а СА=СВ по свойству отрезков касательных. проведенных из одной точки, то прямоугольные треугольники АОС и ВОС равны по гипотенузе и катету. (∠А=∠В=90°), значит, ∠АОС=∠ВОС⇒=90°-0.5∠АСО, тогда ∠АОВ=180°-83°=97°

3. Периметр равен 36, значит, сторона 36/4=9, высота ромба равна частному от деления площади на сторону, то есть 54/9=6

4. tg∠B=АС/ВС=7/2=3.5

4,7(32 оценок)
Ответ:
Тимофейзъ
Тимофейзъ
22.12.2022
Пусть a,\,b,\,c,\,m_a,\,m_b,\, m_c - длины сторон и медиан треугольника ABC, S_{ABC}=S.Воспользовавшись формулу S=pr и то, что S_{GBC}=S_{GAB}=S_{GAC}= \frac{S}{3}, получаем, что нужно доказать неравенство.
    Подставив вместо р и r, получим
\frac{3a+2(m_b+m_c)}{2S} + \frac{3b+2(m_a+m_b)}{2S} + \frac{3c+2(m_a+m_b)}{2S} \geq \frac{3(a+b+c)}{2S} + \frac{36}{a+b+c}
Упрощать здесь не буду, но напишу упрощенный
\frac{m_a+m_b+m_c}{S} \geq \frac{6S}{a+b+c}
Или имеем такое равенство: \frac{m_a}{3} + \frac{m_b}{3}+ \frac{m_c}{3} \geq \frac{6S}{a+b+c}

Пусть d_a,\, d_b,\, d_c-расстояния от точки G к сторонам a, b, c треугольника АВС. Очевидно, что d_a \leq \frac{m_a}{3} ,\,d_b \leq \frac{m_b}{3} ,\, d_c= \frac{m_c}{3} Также имеемd_a= \frac{2S_{GBC}}{a} = \frac{2S}{3a}. Аналогично, d_b= \frac{2S}{3b} ,\,\, d_c= \frac{2S}{3c}

Достаточно доказать неравентсво \frac{2S}{3a} + \frac{2S}{3b}+ \frac{2S}{3c} \geq \frac{6S}{a+b+c}, которое равносильна неравенству, что выражает отношение между средним арифметическим и средним гармоническим 3 положительных чисел:
        \frac{a+b+c}{3} \geq \frac{3}{ \frac{1}{a}+\frac{1}{b}+\frac{1}{c} }
4,5(10 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ