1) Друга висота дорівнює 24 см
Объяснение:
Маємо парал. АВСД АВ=8 см , ВС=16 см , ВК(висота до сторониАД) =12 см, знайти іншу висоту до сторони СД Можна через квадратне рівняння , а можна швидче, якщо порівняти подібні трикутники АВЕ і ВКС ВЕ/АВ=ВК/ВС ВК(друга висота)=12*16/8=24 см.
2)S=48²=2304 см²
3) Р=48 знайти площу нехай Х буде стороною квадрата , 4Х=48 , Х=12 S=12²=144 см²
4) позначимо сторону прямокутника через Х, друга буде 5Х , складемо периметр:2х+10х=44 12х=44 х=3,7 , друга сторона =5*3,7=18,5 S=18,5*3,7=68.5 см²
5) S =1/2*27*22=297 см²
6)S= 1/2*13*14=91см²
То есть, если в параллелограмме один угол прямой, то все остальные углы равны ему. А параллелограмм, у которого все углы прямые, - это прямоугольник.
Объяснение:
Доказать это можно следующим образом:
Пусть дан параллелограмм ABCD, у которого угол A прямой: ∠A = 90°.
Как известно, одним из свойств параллелограмма является то, что в нем противоположные углы равны между собой. Противоположным для угла A является угол C. Значит, ∠C =∠A = 90°.
Как известно, сумма углов любого выпуклого четырехугольник (а параллелограмм им является) равна 360°. Это следует из формулы суммы углов для выпуклых многоугольников: 180° * (n - 2), где n — количество сторон. В свою очередь данная формула доказывается путем проведения диагоналей из одной вершины выпуклого многоугольника к остальным вершинам. Эти диагонали разбивают многоугольник на n - 2 треугольников. А как известно, сумма углов любого треугольника равна 180°.
Таким образом, так как сумма углов параллелограмма равна 360°, а два угла уже известны, и равны по 90°, то на два остальных угла приходится 180°:
∠B + ∠D = 360° – (∠C +∠A) = 360° – (90° + 90°) = 180°.
Углы B и D являются второй парой противоположных углов параллелограмма, а значит, равны друг другу: ∠B = ∠D. При этом их сумма равна 180°. Следовательно, каждый из этих углов равен половине от 180°. Эта половина будет равна 90°. Таким образом, ∠B = ∠D = 90°.
Д =∠B = ∠C =∠D = 90°. То есть, если в параллелограмме один угол прямой, то все остальные углы равны ему. А параллелограмм, у которого все углы прямые, - это прямоугольник.