Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
12ед.
Объяснение:
Дано
Конус
R=5ед радиус конуса.
Sбок=65 ед² площадь боковой поверхности конуса.
l=? ед. образующая конуса
h=? ед. высота конуса.
Решение.
Формула нахождения площади боковой поверхности конуса.
Sбок=πRl.
Найдем образующую
l=Sбок/πR=65π/5π=13ед. образующая (апофема)
Апофема, высота и радиус конуса образуют прямоугольный треугольник, где радиус и высота -это катеты, а апофема- это гипотенуза.
По теореме Пифагора найдем высоту конуса
h=√(l²-R²)=√(13²-5²)=√(169-25)=√144=12ед. высота конуса.