64см², 8см
Объяснение:
І вариант (сложный, но из него понятно откуда выведены формулы второго варианта)
1) у квадрата стороны равны и диагонали равны;
2) диагональ и две стороны квадрата образуют прямоугольный треугольник, у которого катеты равны, т.к. это стороны квадрата, а диагональ есть его гипотенузой
3) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Пусть катет равен х, тогда:
(8√2)²=х²+х²
64*2=2х²
128=2х²
х²=128:2
х²=64
х=√64, х>0
х=8 (см) - катет треугольника и сторона квадрата
S=8*8=64см² - площадь квадрата
ІІ Вариант: есть формула
Sквадр.=d²/2, где d -диагональ квадрата ⇒S=(8√2)²/2=128/2=64см²
Sквадр.=а*а или а², где а- сторона⇒а=√S=√64=8см)
Xm=(Xa+Xb)/2 = (4-2)/2=1. Ym=(Ya+Yb)/2= (5-1)/2=2. M(1;2). Xk=(Xa+Xb)/2 = (-2-2)/2=-2. Yk=(Ya+Yb)/2= (5+3)/2=4. K(-2;4).
б) |MC|=√[(Xc-Xm)²+(Yc-Ym)²]=√[(-2-1)²+(3-2)²]=√10.
|KB|=√[(Xb-Xk)²+(Yb-Yk)²]=√[(4+2)²+(-1-4)²]=√61.
в) |MK|=(1/2)*|BC|. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=
√[(-2-4)²+(3+1)²]=√52. |MK|=√52/2=√13.
Или так: |MK|=√[(Xk-Xm)²+(Yk-Ym)²]=√[(-2-1)²+(4-2)²]=√13.
г) |AB|=√[(Xb-Xa)²+(Yb-Ya)²]=√[(4+2)²+(-1-5)²]=6√2. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=√[(-2-4)²+(3+1)²]=√52.
|AC|=√[(Xc-Xa)²+(Yc-Ya)²]=√[(-2+2)²+(3-5)²]=2.