Проведем из точки M отрезок MЕ, параллельный AP, до пересечения со стороной ВС. Тогда по теореме Фалеса для угла АСВ и параллельных MЕ и AP отрезок MЕ будет делить на равные отрезки сторону угла СР, т.е. РЕ=ЕC. Аналогично, по теореме Фалеса для угла СВА и параллельных MЕ и АР отрезок АР будет делить сторону ВЕ в отношении 7:3, т.е. ВР/PЕ = 7/3. Поэтому отношение ВР/ВС = 7/(7+3+3)=7/13. Из условия задачи ВК/КМ=7/3, поэтому ВК/ВМ= 7/(7+3)=7/10. Обзначим площадь треугольника BCM как S. S=(1/2)*BM*BC*SinCBM. Площадь треугольника ВКР S ВКР=(1/2)*BK*BP*SinCBM = (7/10)*(7/13)*S = (49/130)*S. Площадь четырехугольника S KPCM = S - S ВКР = S - (49/130)*S = (1 - 49/130)*S = (81/130)*S. Отношение площади треугольника ВКР к площади четырехугольника KPCM равно ((49/130)*S)/((81/130)*S) = 49/81.
Пусть S₁ - это площадь бо́льшего треугольника, а S₂ - площадь меньшего треугольника.
Пусть k > 1 (это значит, что в числителе будет стоять бо́льший треугольник).
![k = \frac{5}{2} = 2,5.](/tpl/images/0987/5463/9041f.png)
Площади подобных треугольников относятся как квадрат коэффициента подобия.Отсюда -
1,28 (ед²).
- - -
Случай 2 - Площадь меньшего треугольника равна 8 (ед²).В этом случае наоборот k < 1 (в числителе будет стоять меньший треугольник).
S₁ - площадь бо́льшего треугольника, S₂ - площадь меньшего треугольника
Тогда -
50 (ед²).