1. Пусть a b c - ребра параллелепипеда, d - большая диагональ. Заданы диагонали граней. Тогда
a^2 + b^2 = 11^2;
b^2 + c^2 = 19^2;
a^2 + c^2 = 20^2;
a^2 + b^2 + c^2 = d^2;
Складываем первые три равенства, получаем
2*d^2 = 11^2 + 19^2 + 20^2; d^2 = 441; d = 21.
2. Надо найти высоту H параллелепипеда, а для этого надо найти большею диагональ (обозначим её m) параллелограмма в основании, и потом на неё разделить заданную площадь S = 63.
Большея диагональ соединяет вершины острых углов, поэтому мы ищем эту диагональ из треугольника со сторонами 3 и 5 и углом 180 - 60 = 120 градусов.
m^2 = 3^2 + 5^2 + 2*5*3*(1/2) = 49; (Это теорема косинусов)
m = 7;
H = S/m = 63/7 = 9;
Боковая поверхность равна 2*(3 + 5)*9 = 144
88 см²
Объяснение:
ВС = 5 см, AD = 17 см, АВ = CD = 10 см.
Проведем высоты ВК и СН.
ВК║СН как перпендикуляры к одной прямой, ВС║КН, ⇒
ВКНС - прямоугольник,
КН = ВС = 5 см
ΔАВК = ΔDCH по гипотенузе и катету:
∠АКВ = ∠CHD = 90°,
АВ = CD по условию,
ВК = СН как высоты трапеции,
значит АК = НD = (AD - КН)/2 = (17 - 5)/2 = 6 см
ΔАКВ: ∠АКВ = 90°, по теореме Пифагора:
ВК = √(АВ² - АК²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
Sabcd = 1/2 (AD + BC) · BK
Sabcd = 1/2 (17 + 5) · 8 = 1/2 · 22 · 8 = 88 см²