1.Пусть дана трапеция АВСД, чтобы найти периметр, НЕ ХВАТАЕТ только стороны АВ, которая равна высоте СТ, проведенной к стороне АД из вершины С. Точка Т лежит на АД, т.к. СТ⊥АД, то по теореме Пифагора из ΔСТД найдем СТ=√(20²-16²)=√(36*4)=12, значит периметр равен
АД+ВС+СД+АВ=25+9+20+12=66/см/
2.Большая диагональ лежит против тупого угла С, тогда меньшая диагональ АС, которую найдем из ΔАВС ;
АС=√(АВ²+ВС²)=√(12²+9²)=√(144+81)=15/см/
3.В треугольнике АСД стороны АС=15; СД=20; АД=25, и связаны между собой таким отношением -квадрат большей стороны равен сумме квадратов двух других, действительно, 25²=20²+15²,625=400+225, но тогда по теореме, обратной теореме Пифагора треугольник АСД - прямоугольный с прямым углом С, а раз так, То АС- расстояние от точки А до прямой СД, это расстояние ρ(A;CD) равно АС=15см
Если диагонали трапеции являются биссектрисами, то точка пересечения диагоналей - центр вписанной окружности. А если в 4-ник можно вписать окружность, то у него суммы длин противоположных сторон равны.
АВСД - равноб. трапеция. АВ = СД = с. Основание ВС = b = 3. Основание АД = а. Тогда имеем систему:
2с = а + 3,
2с + а + 3 = 42, а = 18, с = 10,5
Для нахождения площади необходимо знать высоту.
Проведем высоты ВК и СМ (обозначим h). Тогда из равенства тр-ов АВК и СМД получим: АК = МД = (a-b)/2 = 7,5
Из пр.тр. АВК найдем высоту по теореме Пифагора:
h = кор( 10,5^2 - 7,5^2) = кор54 = 3кор6
Тогда площадь трапеции:
S = (a+b)*h /2 = (63кор6)/2 см^2.