60°; 120°
Р(АВСD)=16 ед
Объяснение:
Рассмотрим треугольник ∆ВDP
BD=4 ед гипотенуза
PD=2 ед катет
Катет в два раза меньше гипотенузы, когда катет против угла 30°
<РВD=30°
Сумма острых углов в прямоугольном треугольнике равна 90°
<РDB=90°-<PBD=90°-30°=60°
Диагональ ромба является биссектриссой его углов.
ВD- биссектрисса угла <АDC
<ADC=2*<PDB=2*60°=120°
Сумма углов прилежащих к одной стороне ромба равна 180°
<ВАD=180°-<ADC=180°-120°=60°
В ромбе с углами 60°; 120°, меньшая диагональ равна стороне ромба.
ВD=AB=4ед
P(ABCD)=4*AB=4*4=16 ед.
1. Найдём периметр треугольника: 10+10+12=32, значит полупериметр равен 16.
2. Найдём площадь треугольника по формуле герона: S=sqrt(p(p-a)(p-b)(p-c))=sqrt(16(16-10)(16-10)(16-12))=sqrt(16*6*6*4)=sqrt2304=48
3.Найдём радиус окружности по формуле:
r=(a*b*c)/(4*S)
r= 1200/192=6,25
ОТВЕТ:6,25.