Признаки ромба: равенство сторон и неравенство диагоналей.
Перпендикулярность диагоналей и деление их точкой пересечения пополам вытекают как следствие из равенства сторон по свойству равнобедренных треугольников.
Точка А Точка В Точка С
х у х у х у
1 5 7 7 13 5
Длины сторон
AB (c) = √((xB-xA)² + (yB-yA)²) = 40 6,32455532
BC (a) = √((xC-xB)² + (yC-yB)²) = 40 6,32455532
AC (b) = √((xC-xA)² + (yC-yA)²) = 144 12
Точка D BD = √((xD-xB)² + (yD-yB)²) = 16 4
х у СD = √((xD-xС)² + (yD-yС)²) = 40 6,32455532
7 3 AD = √((xD-xA)² + (yD-yA)²) = 40 6,32455532.
Как видим - все признаки совпали.
Доказано: чотирикутник з вершинами в точках А(1;5),В(7;7),С(13;5) i D(7;3)-ромб.
Это же можно доказать и по векторам.
АВ = (7-1; 7-5) = (6; 2), |AB| = √(36 + 4) = √40.
BC = (13-7; 5-7) = (6; -2), |BC| = √(36 + 4) = √40.
CD = (7-13; 3-5) = (-6; -2), |CD| = √(36 + 4) = √40.
AD = (7-1; 3-5) = (6; -2), |AD| = √(36 + 4) = √40.
Диагонали:
BD = (7-7; 3-7) = (0; -4), |BD| = 4.
AC = (13-1; 5-5) = (12; 0), |AC| = 12.
Основания - правильные треугольники. О₁ - центр верхнего основания (точка пересечения медиан (биссектрис, высот)), О - центр нижнего основания.
Пусть Н - середина В₁С₁, тогда О₁Н - радиус окружности, вписанной в треугольник А₁В₁С₁.
О₁Н = а√3/6 = 6√3/6 = √3 см
Пусть К - середина ВС, тогда ОК - радиус окружности, вписанной в треугольник АВС:
ОК = 12√3/6 = 2√3 см.
ОО₁ - высота пирамиды, тогда
ОО₁⊥ВС и АК⊥ВС, т.е. ребро ВС перпендикулярно двум пересекающимся прямым плоскости АКН, значит
ВС⊥(АКН)
Тогда ВС⊥КН, ∠НКА = 30° и НК - апофема пирамиды.
Sбок = (P₁ + P₂) · HK, где P₁ и P₂ - периметры оснований.
Осталось найти НК.
ОО₁НК - прямоугольная трапеция. Проведем в ней высоту НТ.
ОО₁НТ - прямоугольник, ОТ = О₁Н = √3 см
ТК = ОК - ОТ = 2√3 - √3 = √3 см
ΔНТК: cos 30° = TK / HK
HK = TK / cos 30° = √3 / (√3/2) = 2 см
Sбок = (P₁ + P₂) · HK = (6 ·3 + 12 · 3) · 2 = (18 + 36) · 2 = 54 · 2 = 108 см²