Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
Плоскость АВ1С пересекает куб по линиям АВ1 и В1С. Расстояние до этой плоскости от точки С1 (перпендикуляр С1Н к этой плоскости) равно расстоянию до этой плоскости от точки О (перпендикуляр ОР к этой плоскости), так как прямая, на которой лежат точки О и С1 параллельна плоскости АВ1С, поскольку эта прямая параллельна линии АС пересечения куба плоскостью АВ1С. Найдем ОР. По Пифагору отрезок В1D1 = √2 - это диагональ квадрата А1В1С1В1. Тогда ОВ1= √2/2, так как диагонали квадрата в точке пересечения делятся пополам. В прямоугольном треугольнике ВВ1О Отрезок ОР является высотой, опущенной из прямого угла О на гипотенузу В1Q и по свойству этой высоты OP=(ОВ1*ОQ)/В1Q. По Пифагору из треугольника ВВ1Q: В1Q= √(BQ²+ВВ1²)=√(3/2) = √3/√2. Тогда ОР=(√2/2)*1/(√3/√2) = (√2/2)*1*(√2/√3) = 2/(2√3) = 1/√3 = √3/3. ответ: расстояние от С1 до плоскости АВ1С равно √3/3.
из точки В к основанию АД опускаешь высоту, получается высота ВК.
из точки С опускаешь высоту к основанию АД, получается высота СМ.
ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14
АК=МД=14/2=7
В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы.
В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30
Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14