Длина этого прямоугольника по условию задачи 30+10=40 см Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора. d²=40²+30²= Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5. Диагональ равна 50 см
АВ= 6 см, ВС= 8 см, угол между ними β= 60°.
Сначала найдём третью сторону треугольника.
По теореме косинусов:
AC²= AB² + BC² - 2•AB•BC•сosβ;
AC²= 36+64 - 2•6•8•½;
AC²= 100 - 48;
AC²= 52;
AC= 2√13 см ~ 7 см.
Формула радиуса вписанной в треугольник окружности во вложении.
Для того, чтобы его найти, сначала посчитаем полупериметр треугольника.
р= (АВ+ВС+АС)/2= (6+8+7)/2= 21/2= 10,5.
Находим радиус.
r²= (10,5 - 6)(10,5 - 8)(10,5 - 7) / 10,5;
r²= 4,5•2,5•3,5 / 10,5;
r²= 39,375 / 10,5;
r²= 3,75;
r= √3,75 ~ 1,9 (см)
P.S. Ужасные числа, но это верное решение...