1. площа прям. трик.= 1/2 катет*катет.(один катет=12 за умовою, другий - невідомий). 2. З вершини прямого кута опустимо пкрпендикуляр на гіпотенузу. за теоремою Піфагора знайдемо довжину перпендикуляра як невідомого катета: під коренем 144-64= під кор. 80= під кор. 16*5=4*корінь з пяти. 3. у 8 класі вчили, що квадрат цього перпендикуляра, що ми провели = добутку двох проекцій, одна 8 за умовою задачі, а другу позначимо х. тому 8х=(4*корінь з пяти) у квадраті 8х=80 х=10 - це друга проекція. отже, вся гіпотенуза=10+8=18. 4. за т.Піфагора знайдем невідомий другий катет. під коренем 18 у квадраті-12 у квадраті=6*корінь з пяти. 5. площа=1/2 *12*6корінь5=36*корінь з пяти.
1) Угол С = 180 - А - В = 180 - 66 - 42 = 72 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = c*sin A/sin C = 20*sin 66/sin 72 b = c*sin B/sin C = 20*sin 42/sin 72 Синусы смотрим по таблице Брадиса.
2) Решается точно также Угол B = 180 - A - C = 180 - 18 - 40 = 122 По теореме синусов a/sin A = b/sin B = c/sin C Стороны a = b*sin A/sin B = 5*sin 18/sin 122 = 5*sin 18/sin 58 c = b*sin C/sin B = 5*sin 40/sin 122 = 5*sin 40/sin 58
3) Прямоугольный треугольник, теорема косинусов превращается в теорему Пифагора. c^2 = a^2 + b^2 = 16^2 + 20^2 = 256 + 400 = 656 c = √656 По теореме синусов a/sin A = b/sin B = c/sin C sin A = a/c*sin C = 16/√656*sin 90 = 16/√656 = 16√656/656 sin B = b/c*sin C = 20/√656*sin 90 = 20/√656 = 20√656/656 √656 смотрим по таблице Брадиса.
6корень из трёх отнять 2корень из трёх=4 корня из 3
ответ : 4 корня из 3