Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Угол САМ=58°
Угол АМС=58°
Угол АСМ=64°
Угол ВМК=58°
Угол МВК=64°
Угол МКВ=58°
Объяснение:
В связи с тем, что сторона АС равна стороне СМ мы понимаем, что треугольник АСМ равнобедренный.
В равнобедренном треугольнике углы при основании равны, а сумма углов треугольников равна 180°
В данном треугольнике углы при основании это угол САМ и угол АМС. Если САМ равен 58°, следовательно и угол АМС будет равен 58°
Углом при вершине в данном треуголнике является угол АСМ, он равен разности суммы углов и суммы двух других сторон, мы получаем:
180-(58+58)=64°
Перемещаемся на треугольник ВМК . Здесь, угол ВМК равен углу АМС , так как они вертикальные.
Отсюда мы получаем , что треугольники АМС и ВМК конгруэнтны.
Следовательно, угол МВК равен углу АСМ(64°), а угол МКВ равен углу САМ(58°).